Home > Hyperbole, Software Defined Storage, Virtualisation > Storage– Software Defined Since 1982

Storage– Software Defined Since 1982

if you take that 3 step process for creating a “Software Defined” infrastructure that I outlined in my previous post, you could reasonably say that storage has been “software defined” since about 1982 (arguably as early as 1958 when the first disk drive made its appearance)


  • Step 1 – identify and then formally define a set of common functions or primitives performed by existing infrastructure that are optimally run in purpose built devices (e.g. hardware filled with interfaces and ASICs) – This becomes the "Data Plane".
    From a data storage perspective I have broken down what I see as the common storage primitives into four main categories. I’ll probably use these categories as a tool for functional comparisons of various Software Defined Storage implementations going into the future.

placement managment – e.g. given an logical address and some data by a requestor,  write that data to an underlying storage medium so that it can be subsequently retrieved using that address without the requestor needing to be aware of the physical characteristics of that underlying storage medium

access managment – e.g. given an address by a requestor, read data from an underlying storage medium and make it available to the requestor. Additionally in the case where multiple requestors may make simultaneous requests to place or access the same data, provide a mechanism to arbitrate that access.

copy management – e.g. given a set of source addresses  and a range of target addresses, copy the data from the source to the target on behalf of the requestor

persistence management – in most storage systems this is an implied function, though increasingly with the rise of protocols such as CDMI, and XAM, data persistence SLOs are being explicitly defined at placement time.  In most cases however, data must be stored until the device itself fails, and the device is generally expected to have a lifetime of multiple years.

  • Step 2 – Create a protocol that manages those functions
    The great thing about standards is there’s so many of them … and the storage industry just LOVES forming standards bodies to create new protocols to manage the functions I described above. Many of them have been around for a while: SCSI was standardised in 1982, NFS in 1989, SMB in 1992 (kind of), OSD in 2004 and in more recent times we have seen implementations like XAM in 2010, and most recently CDMI which became an ISO standard in 2012.

    Some of us get religious about these standards and which one should be used for what purposes, what I find interesting is that they all seem to be converging around a common set of functionality, so it’s possible that we will eventually see one storage protocol to rule them all, but I doubt it will happen any time soon. In the near term, whether we need to create another new protocol is debatable, but as of this moment I’m pretty impressed with the work being done at SNIA with CDMI, not as a “new replacement” but as something which leverages the work that’s already been done with the other protocols and fills in their gaps, but I’m getting WAY ahead of myself here.


  • Step 3 – Create a standards compliant controller that runs on general purpose hardware (e.g. an intel server, virtualised or otherwise) that takes higher order service requests from applications and translates those into the primitives codified in step 1, over the protocol devised in step 2.  – This becomes the "Control Plane"
    Well if you accept that the existing storage protocol standards are functionally equivalent to the OpenFlow Protocol in Software defined Networking, then pretty much any modern operating system could function as a controller. Also any modern hypervisor also acts as a controllers, and any storage array which uses SCSI protocols to talk to the disks at the back end also acts as a controller, and in my view this is an accurate description.
    Each of these constructs acts a a standards compliant controller in a software defined storage infrastructure, with multiple levels of encapsulation with consequent challenges that there is significant functional control overlap between these controllers. Over the next few posts I’ll go through what this encapsulation looks like, where the challenges and opportunities are in each level, the design choices we face, and build that up so we can see how close we are to achieving something that matches some of they hype around software defined storage.

It’s also worth noting that until I’ve reached my conclusion, much of what I’ve written and will write will not neatly match up with the analyst definitions of software defined storage. If you bear with me we’ll get there, and probably then some. My hope is that if you follow this journey you’ll be in a better position to take advantage of something that I’ll be referring to as “SLO Defined” storage (simply because I really don’t think that “Software Defined” is particularly useful as a label)

If you want to jump there now and get the analysts views, check out what IDC and Gartner have to say. For example IDC’s definitions of software defined storage from http://www.idc.com/getdoc.jsp?containerId=prUS24068713 says in part

software-based storage stacks should offer a full suite of storage services and federation between the underlying persistent data placement resources to enable data mobility of its tenants between these resources

The Gartner definition which isn’t public, takes a slightly different approach and can be found in their document “2013 Planning Guide: Data Center, Infrastructure, Operations, Private Cloud and Desktop Transformation” where it talks about higher level functionality including the ability for upper level applications to define what storage objects they need with pre-defned SLO’s and then have that automatically provisioned to them. (or at least that is my take after a quick read of the document).

IMHO, both of these definitions have merit, and both go way beyond merely running array software in a VSA, or bundling software management functions into a hypervisor, or pretty much anything else that seems to pass for Software Defined Storage today, which is why I think it’s worth writing about …. In …. Painful …. Detail Smile

As always, Comments and Criticisms are welcome.


  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply - Comments Manually Moderated to Avoid Spammers

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: